3.257 \(\int \frac{\sec (e+f x)}{(a+b \sec (e+f x)) (c+d \sec (e+f x))^2} \, dx\)

Optimal. Leaf size=187 \[ \frac{2 b^2 \tanh ^{-1}\left (\frac{\sqrt{a-b} \tan \left (\frac{1}{2} (e+f x)\right )}{\sqrt{a+b}}\right )}{f \sqrt{a-b} \sqrt{a+b} (b c-a d)^2}+\frac{d^2 \sin (e+f x)}{f \left (c^2-d^2\right ) (b c-a d) (c \cos (e+f x)+d)}-\frac{2 d \left (-a c d+2 b c^2-b d^2\right ) \tanh ^{-1}\left (\frac{\sqrt{c-d} \tan \left (\frac{1}{2} (e+f x)\right )}{\sqrt{c+d}}\right )}{f (c-d)^{3/2} (c+d)^{3/2} (b c-a d)^2} \]

[Out]

(2*b^2*ArcTanh[(Sqrt[a - b]*Tan[(e + f*x)/2])/Sqrt[a + b]])/(Sqrt[a - b]*Sqrt[a + b]*(b*c - a*d)^2*f) - (2*d*(
2*b*c^2 - a*c*d - b*d^2)*ArcTanh[(Sqrt[c - d]*Tan[(e + f*x)/2])/Sqrt[c + d]])/((c - d)^(3/2)*(c + d)^(3/2)*(b*
c - a*d)^2*f) + (d^2*Sin[e + f*x])/((b*c - a*d)*(c^2 - d^2)*f*(d + c*Cos[e + f*x]))

________________________________________________________________________________________

Rubi [A]  time = 0.612432, antiderivative size = 187, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 5, integrand size = 31, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.161, Rules used = {3988, 3056, 3001, 2659, 208} \[ \frac{2 b^2 \tanh ^{-1}\left (\frac{\sqrt{a-b} \tan \left (\frac{1}{2} (e+f x)\right )}{\sqrt{a+b}}\right )}{f \sqrt{a-b} \sqrt{a+b} (b c-a d)^2}+\frac{d^2 \sin (e+f x)}{f \left (c^2-d^2\right ) (b c-a d) (c \cos (e+f x)+d)}-\frac{2 d \left (-a c d+2 b c^2-b d^2\right ) \tanh ^{-1}\left (\frac{\sqrt{c-d} \tan \left (\frac{1}{2} (e+f x)\right )}{\sqrt{c+d}}\right )}{f (c-d)^{3/2} (c+d)^{3/2} (b c-a d)^2} \]

Antiderivative was successfully verified.

[In]

Int[Sec[e + f*x]/((a + b*Sec[e + f*x])*(c + d*Sec[e + f*x])^2),x]

[Out]

(2*b^2*ArcTanh[(Sqrt[a - b]*Tan[(e + f*x)/2])/Sqrt[a + b]])/(Sqrt[a - b]*Sqrt[a + b]*(b*c - a*d)^2*f) - (2*d*(
2*b*c^2 - a*c*d - b*d^2)*ArcTanh[(Sqrt[c - d]*Tan[(e + f*x)/2])/Sqrt[c + d]])/((c - d)^(3/2)*(c + d)^(3/2)*(b*
c - a*d)^2*f) + (d^2*Sin[e + f*x])/((b*c - a*d)*(c^2 - d^2)*f*(d + c*Cos[e + f*x]))

Rule 3988

Int[(csc[(e_.) + (f_.)*(x_)]*(g_.))^(p_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]
*(d_.) + (c_))^(n_), x_Symbol] :> Dist[1/g^(m + n), Int[(g*Csc[e + f*x])^(m + n + p)*(b + a*Sin[e + f*x])^m*(d
 + c*Sin[e + f*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f, g, p}, x] && NeQ[b*c - a*d, 0] && IntegerQ[m] && Inte
gerQ[n]

Rule 3056

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (C_.)*s
in[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> -Simp[((A*b^2 + a^2*C)*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m + 1)*(c +
d*Sin[e + f*x])^(n + 1))/(f*(m + 1)*(b*c - a*d)*(a^2 - b^2)), x] + Dist[1/((m + 1)*(b*c - a*d)*(a^2 - b^2)), I
nt[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n*Simp[a*(m + 1)*(b*c - a*d)*(A + C) + d*(A*b^2 + a^2*C)*
(m + n + 2) - (c*(A*b^2 + a^2*C) + b*(m + 1)*(b*c - a*d)*(A + C))*Sin[e + f*x] - d*(A*b^2 + a^2*C)*(m + n + 3)
*Sin[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, C, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0]
 && NeQ[c^2 - d^2, 0] && LtQ[m, -1] && ((EqQ[a, 0] && IntegerQ[m] &&  !IntegerQ[n]) ||  !(IntegerQ[2*n] && LtQ
[n, -1] && ((IntegerQ[n] &&  !IntegerQ[m]) || EqQ[a, 0])))

Rule 3001

Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.)
+ (f_.)*(x_)])), x_Symbol] :> Dist[(A*b - a*B)/(b*c - a*d), Int[1/(a + b*Sin[e + f*x]), x], x] + Dist[(B*c - A
*d)/(b*c - a*d), Int[1/(c + d*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d, 0]
 && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rule 2659

Int[((a_) + (b_.)*sin[Pi/2 + (c_.) + (d_.)*(x_)])^(-1), x_Symbol] :> With[{e = FreeFactors[Tan[(c + d*x)/2], x
]}, Dist[(2*e)/d, Subst[Int[1/(a + b + (a - b)*e^2*x^2), x], x, Tan[(c + d*x)/2]/e], x]] /; FreeQ[{a, b, c, d}
, x] && NeQ[a^2 - b^2, 0]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rubi steps

\begin{align*} \int \frac{\sec (e+f x)}{(a+b \sec (e+f x)) (c+d \sec (e+f x))^2} \, dx &=\int \frac{\cos ^2(e+f x)}{(b+a \cos (e+f x)) (d+c \cos (e+f x))^2} \, dx\\ &=\frac{d^2 \sin (e+f x)}{(b c-a d) \left (c^2-d^2\right ) f (d+c \cos (e+f x))}+\frac{\int \frac{-b c d-\left (a c d-b \left (c^2-d^2\right )\right ) \cos (e+f x)}{(b+a \cos (e+f x)) (d+c \cos (e+f x))} \, dx}{(b c-a d) \left (c^2-d^2\right )}\\ &=\frac{d^2 \sin (e+f x)}{(b c-a d) \left (c^2-d^2\right ) f (d+c \cos (e+f x))}+\frac{b^2 \int \frac{1}{b+a \cos (e+f x)} \, dx}{(b c-a d)^2}+\frac{\left (d \left (a c d-b \left (2 c^2-d^2\right )\right )\right ) \int \frac{1}{d+c \cos (e+f x)} \, dx}{(b c-a d)^2 \left (c^2-d^2\right )}\\ &=\frac{d^2 \sin (e+f x)}{(b c-a d) \left (c^2-d^2\right ) f (d+c \cos (e+f x))}+\frac{\left (2 b^2\right ) \operatorname{Subst}\left (\int \frac{1}{a+b+(-a+b) x^2} \, dx,x,\tan \left (\frac{1}{2} (e+f x)\right )\right )}{(b c-a d)^2 f}+\frac{\left (2 d \left (a c d-b \left (2 c^2-d^2\right )\right )\right ) \operatorname{Subst}\left (\int \frac{1}{c+d+(-c+d) x^2} \, dx,x,\tan \left (\frac{1}{2} (e+f x)\right )\right )}{(b c-a d)^2 \left (c^2-d^2\right ) f}\\ &=\frac{2 b^2 \tanh ^{-1}\left (\frac{\sqrt{a-b} \tan \left (\frac{1}{2} (e+f x)\right )}{\sqrt{a+b}}\right )}{\sqrt{a-b} \sqrt{a+b} (b c-a d)^2 f}-\frac{2 d \left (2 b c^2-a c d-b d^2\right ) \tanh ^{-1}\left (\frac{\sqrt{c-d} \tan \left (\frac{1}{2} (e+f x)\right )}{\sqrt{c+d}}\right )}{(c-d)^{3/2} (c+d)^{3/2} (b c-a d)^2 f}+\frac{d^2 \sin (e+f x)}{(b c-a d) \left (c^2-d^2\right ) f (d+c \cos (e+f x))}\\ \end{align*}

Mathematica [A]  time = 0.713981, size = 229, normalized size = 1.22 \[ \frac{-2 b^2 \left (c^2-d^2\right )^{3/2} (c \cos (e+f x)+d) \tanh ^{-1}\left (\frac{(b-a) \tan \left (\frac{1}{2} (e+f x)\right )}{\sqrt{a^2-b^2}}\right )-d \sqrt{a^2-b^2} \left (d \sqrt{c^2-d^2} (a d-b c) \sin (e+f x)-2 \left (-a c d+2 b c^2-b d^2\right ) (c \cos (e+f x)+d) \tanh ^{-1}\left (\frac{(d-c) \tan \left (\frac{1}{2} (e+f x)\right )}{\sqrt{c^2-d^2}}\right )\right )}{f \sqrt{a^2-b^2} (c-d) (c+d) \sqrt{c^2-d^2} (b c-a d)^2 (c \cos (e+f x)+d)} \]

Antiderivative was successfully verified.

[In]

Integrate[Sec[e + f*x]/((a + b*Sec[e + f*x])*(c + d*Sec[e + f*x])^2),x]

[Out]

(-2*b^2*(c^2 - d^2)^(3/2)*ArcTanh[((-a + b)*Tan[(e + f*x)/2])/Sqrt[a^2 - b^2]]*(d + c*Cos[e + f*x]) - Sqrt[a^2
 - b^2]*d*(-2*(2*b*c^2 - a*c*d - b*d^2)*ArcTanh[((-c + d)*Tan[(e + f*x)/2])/Sqrt[c^2 - d^2]]*(d + c*Cos[e + f*
x]) + d*(-(b*c) + a*d)*Sqrt[c^2 - d^2]*Sin[e + f*x]))/(Sqrt[a^2 - b^2]*(c - d)*(c + d)*(b*c - a*d)^2*Sqrt[c^2
- d^2]*f*(d + c*Cos[e + f*x]))

________________________________________________________________________________________

Maple [A]  time = 0.1, size = 208, normalized size = 1.1 \begin{align*}{\frac{1}{f} \left ( 2\,{\frac{{b}^{2}}{ \left ( ad-bc \right ) ^{2}\sqrt{ \left ( a+b \right ) \left ( a-b \right ) }}{\it Artanh} \left ({\frac{ \left ( a-b \right ) \tan \left ( 1/2\,fx+e/2 \right ) }{\sqrt{ \left ( a+b \right ) \left ( a-b \right ) }}} \right ) }-2\,{\frac{d}{ \left ( ad-bc \right ) ^{2}} \left ( -{\frac{d \left ( ad-bc \right ) \tan \left ( 1/2\,fx+e/2 \right ) }{ \left ({c}^{2}-{d}^{2} \right ) \left ( \left ( \tan \left ( 1/2\,fx+e/2 \right ) \right ) ^{2}c- \left ( \tan \left ( 1/2\,fx+e/2 \right ) \right ) ^{2}d-c-d \right ) }}-{\frac{acd-2\,b{c}^{2}+{d}^{2}b}{ \left ( c+d \right ) \left ( c-d \right ) \sqrt{ \left ( c+d \right ) \left ( c-d \right ) }}{\it Artanh} \left ({\frac{\tan \left ( 1/2\,fx+e/2 \right ) \left ( c-d \right ) }{\sqrt{ \left ( c+d \right ) \left ( c-d \right ) }}} \right ) } \right ) } \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(f*x+e)/(a+b*sec(f*x+e))/(c+d*sec(f*x+e))^2,x)

[Out]

1/f*(2*b^2/(a*d-b*c)^2/((a+b)*(a-b))^(1/2)*arctanh((a-b)*tan(1/2*f*x+1/2*e)/((a+b)*(a-b))^(1/2))-2*d/(a*d-b*c)
^2*(-d*(a*d-b*c)/(c^2-d^2)*tan(1/2*f*x+1/2*e)/(tan(1/2*f*x+1/2*e)^2*c-tan(1/2*f*x+1/2*e)^2*d-c-d)-(a*c*d-2*b*c
^2+b*d^2)/(c+d)/(c-d)/((c+d)*(c-d))^(1/2)*arctanh(tan(1/2*f*x+1/2*e)*(c-d)/((c+d)*(c-d))^(1/2))))

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(f*x+e)/(a+b*sec(f*x+e))/(c+d*sec(f*x+e))^2,x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(f*x+e)/(a+b*sec(f*x+e))/(c+d*sec(f*x+e))^2,x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(f*x+e)/(a+b*sec(f*x+e))/(c+d*sec(f*x+e))**2,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [B]  time = 1.47005, size = 459, normalized size = 2.45 \begin{align*} -\frac{2 \,{\left (\frac{{\left (\pi \left \lfloor \frac{f x + e}{2 \, \pi } + \frac{1}{2} \right \rfloor \mathrm{sgn}\left (2 \, a - 2 \, b\right ) + \arctan \left (\frac{a \tan \left (\frac{1}{2} \, f x + \frac{1}{2} \, e\right ) - b \tan \left (\frac{1}{2} \, f x + \frac{1}{2} \, e\right )}{\sqrt{-a^{2} + b^{2}}}\right )\right )} b^{2}}{{\left (b^{2} c^{2} - 2 \, a b c d + a^{2} d^{2}\right )} \sqrt{-a^{2} + b^{2}}} + \frac{d^{2} \tan \left (\frac{1}{2} \, f x + \frac{1}{2} \, e\right )}{{\left (b c^{3} - a c^{2} d - b c d^{2} + a d^{3}\right )}{\left (c \tan \left (\frac{1}{2} \, f x + \frac{1}{2} \, e\right )^{2} - d \tan \left (\frac{1}{2} \, f x + \frac{1}{2} \, e\right )^{2} - c - d\right )}} - \frac{{\left (2 \, b c^{2} d - a c d^{2} - b d^{3}\right )}{\left (\pi \left \lfloor \frac{f x + e}{2 \, \pi } + \frac{1}{2} \right \rfloor \mathrm{sgn}\left (2 \, c - 2 \, d\right ) + \arctan \left (\frac{c \tan \left (\frac{1}{2} \, f x + \frac{1}{2} \, e\right ) - d \tan \left (\frac{1}{2} \, f x + \frac{1}{2} \, e\right )}{\sqrt{-c^{2} + d^{2}}}\right )\right )}}{{\left (b^{2} c^{4} - 2 \, a b c^{3} d + a^{2} c^{2} d^{2} - b^{2} c^{2} d^{2} + 2 \, a b c d^{3} - a^{2} d^{4}\right )} \sqrt{-c^{2} + d^{2}}}\right )}}{f} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(f*x+e)/(a+b*sec(f*x+e))/(c+d*sec(f*x+e))^2,x, algorithm="giac")

[Out]

-2*((pi*floor(1/2*(f*x + e)/pi + 1/2)*sgn(2*a - 2*b) + arctan((a*tan(1/2*f*x + 1/2*e) - b*tan(1/2*f*x + 1/2*e)
)/sqrt(-a^2 + b^2)))*b^2/((b^2*c^2 - 2*a*b*c*d + a^2*d^2)*sqrt(-a^2 + b^2)) + d^2*tan(1/2*f*x + 1/2*e)/((b*c^3
 - a*c^2*d - b*c*d^2 + a*d^3)*(c*tan(1/2*f*x + 1/2*e)^2 - d*tan(1/2*f*x + 1/2*e)^2 - c - d)) - (2*b*c^2*d - a*
c*d^2 - b*d^3)*(pi*floor(1/2*(f*x + e)/pi + 1/2)*sgn(2*c - 2*d) + arctan((c*tan(1/2*f*x + 1/2*e) - d*tan(1/2*f
*x + 1/2*e))/sqrt(-c^2 + d^2)))/((b^2*c^4 - 2*a*b*c^3*d + a^2*c^2*d^2 - b^2*c^2*d^2 + 2*a*b*c*d^3 - a^2*d^4)*s
qrt(-c^2 + d^2)))/f